Unit 7electricity & Magnetismmr. Mac's 6th Grade



FREE K-12 standards-aligned STEM

Farad is the unit of capacitance. It represents the amount of electric charge in coulombs that is stored per 1 volt. Henry (H) Henry is the unit of inductance. Siemens (S) siemens is the unit of conductance, which is the opposite of resistance. Coulomb (C) Coulomb is the unit of electric charge. A unit (as mentioned on the electricity bills) is represented in kWH or Kilowatt Hour. This is the actual electricity or energy used. If you use 1000 Watts or 1 Kilowatt of power for 1 hour then you consume 1 unit or 1 Kilowatt-Hour (kWh) of electricity. So the reading on the electricity meter represents the actual electricity used. Share your videos with friends, family, and the world.

  1. Unit 7: Electricity 2 of 4 Related Maine Learning Results Science and Technology A. Unifying Themes A1.Systems Students apply an understanding of systems to explain and analyze man-made and natural phenomena. Analyze a system using the principles of boundaries, subsystems, inputs, outputs, feedback, or the system’s.
  2. The symbol V represents the electric potential (voltage), and the units are energy per unit of charge. In the metric system, we use the term volt (V), which is defined as 1 joules per coulomb (1 J/C = 1 V).

curriculum for educators everywhere!

Find more at TeachEngineering.org.

Quick Look

Unit 7 Electricity & Magnetismmr. Mac's 6th Grade Language Arts

Grade Level: 4 (3-5)

Choose From: 6 lessons and 11 activities

Subject Areas: Physical Science

Summary

Uncountable times every day—with the merest flick of a finger—each one of us calls on electricity to do our bidding. What would your life be like without electricity? Students begin learning about electricity with an introduction to the most basic unit in ordinary matter, the atom. Once the components of an atom are addressed and understood, students move into the world of electricity. First, they explore static electricity, followed by basic current electricity concepts such as voltage, resistance and open/closed circuits. Next, they learn about that wonderful can full of chemicals—the battery. Students may get a 'charge' as they discover the difference between a conductor and an insulator. The unit concludes with lessons investigating simple circuits arranged 'in series' and 'in parallel,' including the benefits and unique features associated with each. Through numerous hands-on activities, students move cereal and foam using charged combs, use balloons to explore electricity and charge polarization, build and use electroscopes to evaluate objects' charge intensities, construct simple switches using various materials in circuits that light bulbs, build and use simple conductivity testers to evaluate materials and solutions, build and experiment with simple series and parallel circuits, design and build their own series circuit flashlight, and draw circuits using symbols.
This engineering curriculum aligns to Next Generation Science Standards (NGSS).

Engineering Connection

Electrification is FIRST on the list of the National Academy of Engineering's top 20 engineering achievements of the 20th century (see http://www.greatachievements.org/). After Edison's 1879 invention of the light bulb, electrification boosted America's economic development and quality of life, soon becoming pervasive in both urban and rural communities to provide lighting, power for home appliances, and in later years, computers and communication devices, as well as the widespread production of goods and services.

If electricity is the workhorse of the modern world, then engineers hold the reins. Beginning with their understanding of atoms and electrons, engineers exploit scientific principles of voltage, current and resistance to create the circuitry and batteries found in electronic devices. They create circuit diagrams to communicate their designs to others. Over the years, and continuing today, engineers invent new equipment, tools and products that use electricity and provide capabilities for people, including electronics, radio, TV, household appliances, telephones, refrigeration, air conditioning, computers, internet, imaging, health technologies, laser and fiber optics, spacecraft.

We now demand so much electricity that engineers are asked to invent new ways to conserve it and generate it, for example, the invention of photovoltaic cells that use sunlight to make electricity. Through the smart use of materials, for their conductivity and insulating characteristics, engineers design devices and appliances that operate correctly, dependably and safely. Engineers are creative with their inventions; using static electricity, engineers devised industrial air filters that clean the air. The engineering design of integrated circuits combines thousands to millions of parallel and series circuits working together. The resulting central processing units (CPUs) have become essential in modern vehicles, video games, smoke detectors, DVD players, garage-door openers, cordless phones, clocks and calculators—useful devices and inventions that improve our lives.

Unit Overview

Overview of topics by lesson: 1) introduction to electricity, both static and current, as well as electrons and atoms, 2) static electricity, including inducing electrical charge, repulsion and attraction, 3) current electricity, including voltage, current and resistance, 4) electrical conductors and insulators, including material properties, 5) series circuits, including resistance and circuit components, and 6) the composition and practical application of parallel circuits, including Ohm's law.

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

See individual lessons and activities for standards alignment.

Unit

Unit Schedule

  • Day 1: Lights Out! lesson
  • Day 2: Static Cling activity
  • Day 3: Take Charge! All About Static Electricity lesson
  • Day 4: Charge It! All About Electrical Attraction and Repulsion activity and Build a Charge Detector activity
  • Day 5: Electrons on the Move lesson
  • Day 6: Completing the Circuit activity
  • Day 7: Two-Cell Battery activity
  • Day 8: Go with the Flow lesson
  • Day 9: Will It Conduct? activity
  • Day 10: Materials Switcheroo: Construct Simple Electrical Switches activity
  • Day 11: Circuits: One Path for Electricity lesson
  • Day 12: Bulbs & Batteries in a Row activity
  • Day 13: Light Your Way: Design-Build a Series Circuit Flashlight activity
  • Day 14-15: Build a Toy Workshop activity
  • Day 16: Parallel Circuitry & Ohm’s Law: Many Paths for Electricity lesson
  • Day 17: Bulbs & Batteries Side by Side activity

Worksheets and Attachments

Visit [www.teachengineering.org/curricularunits/view/cub_electricity_curricularunit] to print or download.

Assessment

Pre-Unit Test: To conduct an overall pre/post content assessment of this curricular unit (six lessons, with associated activities), administer the attached Electricity and Magnetism Pre/Post Test to the class before beginning any discussion on electricity and magnetism. A Spanish version is also available: Electricidad y Manetismo Pre/Post Test. Then, after completion of the final lesson, administer the same (now post-unit) test to the same students and compare pre- to post- scores. In addition, this short test is suitable to administer to a control group of students who have not completed the unit, to comparatively test the impact of the curricular unit on learning. This test was developed by a TE user of this curricular unit.

Post-Unit Test: If you administered the pre-unit test before beginning this curricular unit, conclude the overall pre/post assessment of the unit (six lessons, with associated activities), by administering the Electricity and Magnetism Pre/Post Test to the class after concluding the final lesson and its activity. A Spanish version is also available: Electricidad y Manetismo Pre/Post Test. Compare pre- to post- scores to gauge the impact of the curricular unit on students' learning.

Copyright

© 2004 by Regents of the University of Colorado
Unit 7electricity & Magnetismmr. Mac

Contributors

See individual lessons and activities.

Supporting Program

Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder

Acknowledgements

Unit 7 Electricity & Magnetismmr. Mac's 6th Graders

The contents of this digital library curriculum were developed under grants from the Fund for the Improvement of Postsecondary Education (FIPSE), U.S. Department of Education and the National Science Foundation (GK-12 grant no. 0338326). However, these contents do not necessarily represent the policies of the Department of Education or National Science Foundation, and you should not assume endorsement by the federal government.

Unit 7 Electricity & Magnetismmr. Mac's 6th Grade Ngss

Last modified: January 1, 2021

Unit 7 Electricity & Magnetismmr. Mac's 6th Grader

Free K-12 standards-aligned STEM curriculum for educators everywhere.
Find more at TeachEngineering.org